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ABSTRACT Mathematical modeling of cellular popula-
tion growth, interconnected subsystems of the body, blood
flow, and numerous other complex biological systems prob-
lems involves nonlinearities and generally randomness as well.
Such problems have been dealt with by mathematical methods
often changing the actual model to make it tractable. The
method presented in this paper (and referenced works) allows
much more physically realistic solutions.

Modeling and analysis of a number of biological problems
involving interactions of physiological systems, such as
those between the respiratory system and the cardiovascular
system, can benefit significantly from new advances in
mathematical methodology (1), which allow solution of dy-
namical systems involving coupled systems (2), anharmonic
oscillators (3), nonlinear ordinary or partial differential equa-
tions (4, 5), and delay equations (6). Very general oscillators
that have been studied (3) can be applied to blood pressure
oscillations and cardiac and neural problems. Cardiac pace-
makers, for example, involve stimulation of a regular biolog-
ical rhythm with an external oscillator and can be modeled
by coupled anharmonic oscillators with time delays. All dy-
namical problems are basically nonlinear; commonly used
mathematical approaches that involve some form of linear-
ization are too limited in scope and involve gross and unsat-
isfactory approximations changing essentially the nonlinear
nature of the actual system being analyzed. Thus, the mathe-
matical system actually solved is quite different from the
original nonlinear model. Commonly used nonlinear least
squares analysis for data analysis (such as the Gauss-New-
ton method) involves the same serious deficiency that can
now be circumvented (7).
Randomness is, of course, another factor present in real

systems due to a variety of causes. This can be randomness
or fluctuations either in parameters of an individual system
or in equations involving variations from one individual to
another. Compartment analysis is used to model intercon-
nected subsystems (respiratory system, cardiovascular sys-
tem, etc., or possibly organs-liver, heart, etc.). This leads
to differential equations that realistically are both nonlinear
and stochastic. This randomness can manifest itself in coef-
ficients of differential operators, in inputs, or in initial or
boundary conditions.
Randomness, or stochasticity, in physical (or biological)

systems, like nonlinearity, is generally dealt with by prrtur-
bative methods, averagings which are not generally valid, or
other specialized and restrictive assumptions that do not re-
alistically represent fluctuations, especially if fluctuations
are not relatively negligible. We emphasize that the methods
used here do not require assumption of small nonlinearity or
small randomness, linearization, or closure approximations.

Finally, the methods (1) can handle extremely complex
initial or boundary conditions that may be nonlinear, ran-

dom, or coupled, as well as integral boundary conditions as
in the von Foerster problem arising in cellular population
growth modeling (8, 9) and other biological problems (7).
Neural networks, for example, in their processing and trans-
mission of information display nonlinearity as an essential
feature as well as couplings and fluctuation.
When the analytical methodology makes the mathematical

solution deviate significantly from the model whose solution
was sought, it will convey a false sense of understanding that
will be unjustified by experimental results or actual observa-
tions. The simplifications are of course made in the name of
tractability and the use of well-known mathematics, but they
neglect intrinsic nonlinear and stochastic behavior and mean
simply that the problem has been changed to a different one
than intended.
The decomposition method (1) is also an approximation

method, but all modeling is approximation and this method-
ology approximates (accurately and in an easily computable
manner) the solution of the real nonlinear and possibly sto-
chastic problem rather than a grossly simplified linearized or
averaged problem.
Adequate modeling of blood flow in the human cardiovas-

cular system and ability to solve the resulting very complex
nonlinear equations would contribute materially to better un-
derstandings of pathogenesis of arterial disease and the de-
sign of artificial hearts. Such a solution would depend on
solving the general Navier-Stokes equations without resort
to linearization and assumptions of "smallness." These
equations model fluid flow and occur in a wide variety of
physical applications affecting design of aircraft engines,
shapes of airfoils in aerodynamics, and internal waves in the
ocean and have therefore been intensively studied by physi-
cists. Despite this, however, the solutions indeed leave
much to be desired. For example, the ocean dealt with in
hydrodynamics studies is a mathematized ocean, not the real
ocean in which pressure, density, and velocity are fluctuat-
ing or stochastic variables. Nonlinearities are linearized and
complex terms are dropped in order to get a solution and the
flow is assumed to be laminar since turbulence has not been
tractable to mathematical analysis. Turbulence is a strongly
nonlinear and stochastic phenomenon and the existing math-
ematics that can only deal with linearized and perturbative
cases is not adequate. The blood flow problem is modeled by
these same equations as well as by boundary conditions that
may be even more complicated. We are dealing with flow of
a complex fluid through an elastic or viscoelastic vessel with
branches, organs, prosthetic devices or natural heart valves,
and tubes of varying diameter with possible motion of the
walls under pulsatile flow because of elasticity. Detailed
analysis of arterial flow should consider unsteady viscous
flow and retain all the nonlinear terms. The assumptions of
smallness-e.g., in wall motions-are unrealistic since such
motions may have a significant effect on flow-as in the aor-
ta. The objective is to determine the velocity, knowing quan-
tities such as pressure. Then it is possible to estimate stress-
es on the walls and possible wall damage or filtration, throm-
bus growth, or the behavior in an artificial heart. To be able
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to describe mathematically the flow of blood through pros-
thetic or natural heart valves or the flow about any obstacle
in a vessel, or the analytical description of flow under condi-
tions where it becomes nonlaminar, could help diagnoses
and design of prosthetic devices. Finally, we must be able to
handle another hitherto unsolved problem-that of nonlin-
ear boundary conditions as a result of nonlinear changes of
area with pressure changes.
An interesting area of problems also arises in cellular sys-

tems and aging models. Cellular population growth models
can involve time lags, coupled equations, nonlinearities, and
possibly stochastic parameters as well as boundary condi-
tions that can be random, nonlinear, or coupled (9-11).

Consider for example, the Pearl-Verhulst equation (1)

dN(t) kN(t) - (k/Nc)N2(t),
dt

[1]

where N(t) is the number of cells at time t given initial condi-
tions that at to, we had No cells, k = X - , is the net rate of
increase or decrease of population (X is birth rate; , is death
rate), and NC is the largest population that the environment
can support. Let us write this as

dN(t) _ kN(t) + gN2(t) = 0
dt [2]

and define the operator L = d/dt. Equations in this general
form have been solved (2) even if k and g are stochastic pro-
cesses, ifL involves higher derivatives, and for large classes
of nonlinearities more difficult than the quadratic nonlinear-
ity. Here, we take k, g as constants and write

LN(t) = kN(t) - gN2(t)
L-'LN(t) = N(t) - N(O)

= L-kN(t) - L-'gN2(t).

linearity N2(t)

AO = No
A1 = 2NoN,
A2 = N2 + 2NoN2
A3 = 2(N1N2 + NoN3)

Thus,

N1 = kL-UNo - gL-'N2

N2 = kL-Nj - 2gL-'NoN,
N3 = kL-'N2 - gL-'[N2 + 2NoN2]

Consequently, since No = N(O)

N1 = kL-1N(O) - gN(0)2t

N2 = kL-l[kL-1N(O) - gN(0)2t]

- 2gL-1No[kL-'N(O) - gN(0)2t]

k2N(O)t2 kgN(O)2t2
2 2

2kgN(0)2t2 2g2N(0)3t2
2 2

= - [k2N(O) - 2kgN(0)2 + g2N(0)3],
2

Consequently,

N(t) = N(O) = kL-'N(t) - gL-'N2(t). [3]

Writing N2(t) = -=O A,, where the A, are a special class of
polynomials discussed elsewhere (1), then

N(t) = N(O) + kL-'N(t) - gL-1 An [4]
n=O

Let N(t) be decomposed into components '
=o N,(t), which

are to be determined taking No as N(O) in this case. If an
inhomogeneous term existed here, it would be included in
No. We can now identify

N1 = kL1N0 - gL-1Ao
N2 = kL-Nl - gL-'Aj

[5]

Nn = kL-'Nn-, - gL-'An-l

Thus, when the An are evaluated, all the Nn are completely
determinable in terms of preceding components so we can

get N(t) = No + In-l Nn. Calculation of the An has been
discussed elsewhere (1). We list here for this particular non-

Clearly, all terms are easily calculated.
Mathematical modeling must represent behavior realisti-

cally, as well as being computable. An analytic solution of a
model that deviates significantly from the actual physical
problem being modeled can convey a false sense of under-
standing unjustified by experimental or actual results. These
simplifications, made, of course, for tractability of equations
and the use of well-understood mathematical methods, ne-
glect quite seriously the essentially nonlinear and stochastic
nature of physical and biological phenomena. Linearity is a
special case and linearization of nonlinear phenomena can
change the problem to a different problem. It may be ade-
quate if the nonlinearity is "weak" so perturbative methods
become adequate. If we can deal with "strong" nonlineari-
ties-as we can-then the "weakly nonlinear" or the "lin-
ear" cases derive from the same theory as well. Random
fluctuations are always present in real phenomena and per-

turbative or hierarchy methods and their various adaptations
will be adequate only when randomness is relatively insig-
nificant. We wish, therefore, to deal with "strongly" sto-
chastic cases and to derive the special cases as well without
the averaging procedures, closure approximations and trun-
cations, or assumptions of special nature for the processes
such as Markov or Gaussian white noise, etc. In some prob-
lems exact linearization is possible by clever transformations
of variables. It is, however, only rarely possible and not a
method for general use. These problems have been dis-

[6]

[7]

etc.
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cussed in many mathematical papers and particularly in a
recent book that deals with Adomian's decomposition meth-
od (1) for solving such problems.
While still an "approximation" method, it is not to be

viewed as less accurate than a so-called "exact" method. All
modeling is an approximation and if we change a nonlinear
stochastic problem by linearizing it or assuming 8-correlated
or small magnitude fluctuations or by making closure ap-
proximations, then an exact solution of this grossly simpli-
fied and different model may be, and generally is, very much
less accurate than an approximate solution of the real prob-
lem if it can be done. It is to be noted too that once we real-
ize we are less limited by the mathematics, we can develop
more realistic and sophisticated models, since modeling
physical phenomena involves retention of essential features
while striving for simplicity so resulting equations can be
solved. Modeling is always a compromise between realistic
representation and mathematical tractability. With fewer
limitations imposed to achieve tractability, we can make
models more realistic. We are now able to include delayed
effects (3, 4) rather than assuming changes take place instan-
taneously and can make these delays constant, time-depen-
dent, or random. We can deal with coupled nonlinear equa-
tions (5), random initial or boundary conditions, and systems
of nonlinear differential equations (6, 7). The results are easi-
ly obtained and accurate.
This new methodology is developing very rapidly indeed

and can meet the difficulties raised. The equations are treat-
ed as very general operator equations and the solution is
written as an assumed decomposition into components to be

found with expansion of nonlinearities in terms of specially
generated sets of polynomials defined by Adomian (1) for the
particular nonlinearities. The components can be found suc-
cessively without closure approximations, assumptions of
weak nonlinearities, "small" fluctuations, etc., and in a com-
putable manner with as much accuracy as required.

This research was supported in part by U.S. Public Health Ser-
vice Grant HL26707.
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